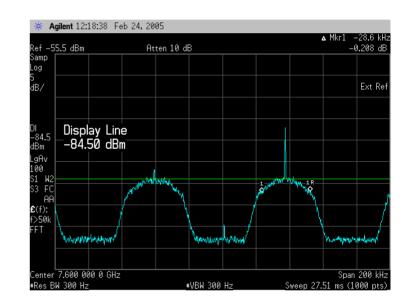
## RHIC Stochastic Cooling

#### J. Michael Brennan

Science and Technology Review
by the Office of Nuclear Physics of the U.S. Department of Energy
25 July 2006




#### **Motivation and Context**

- IBS causes emittance growth which leads to debunching
  - Makes the collision vertex longer
  - Allows beam in abort gap
- Stochastic "cooling" can counteract IBS
  - S.c. was invented at CERN and *enabled* anti-proton colliders
  - The track record for extending s.c. to bunched beam was not good (abandoned at SppS and Tevatron)
  - Not part of RHIC base line design



### Heavy ions should be different

- We (Mike Blaskiewicz) have been studying the Schottky signals in RHIC since day one
  - Heavy ions should be easier than protons
    - 1. Charge per ion, Z = 79
    - 2. Halo cooling
    - 3. Full bucket (dynamics similar to coasting beam)
    - 4. IBS actually helps (coherent components)
  - New technology (fiber optics)



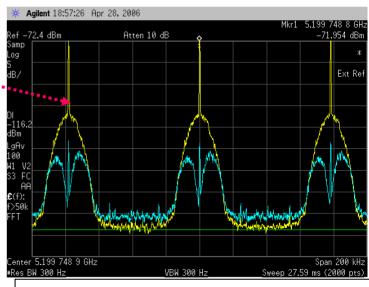
Schottky spectrum of heavy ions at 7.6 GHz.

S/N is excellent, coherent lines are manageable



# Principle (and limitations) of Stochastic Cooling

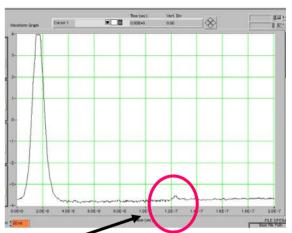
- Feedback and damp the fluctuations (energy or position)
  - You can measure the voltage (AC) from a resistor
    - Because the number of electrons is finite
    - Feedback on the fluctuations and cool the resistor
    - Beam fluctuations are the Schottky signal
    - A DC beam give a signal on and AC detector
  - Fewer ions make larger percentage fluctuations
- Basic equation of S.C.
  - Cannot cool protons, N<sub>particles</sub>.
  - Need 8 GHz, **B**and **W**idth
  - Full bucket helps optimum gain
  - Cools "hot" beam best ( halo cooling)


$$\tau_{cool} = \frac{1}{g_{opt}} \frac{N_{part.}}{BW}$$



# Why is Bunched beam harder to cool than coasting (DC) beam?

- 1. The effective number of particles is amplified by the bunching factor
- 2. Coherent components in the Schottky spectrum challenge the dynamic range of the electronics
  - 1. High dynamic range, low noise amplifier
  - 2. New commercial fiber optic components
  - 3. Pre-filtering exploits bunched beam characteristics

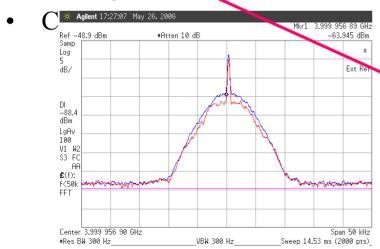

$$N_{\text{effective}} = \left(\frac{10^9}{5 \text{ns}}\right) \times 12 \mu \text{s}$$
$$= 2.5 \times 10^{12}$$



Beam Spectrum at 5 GHz, with notch filter

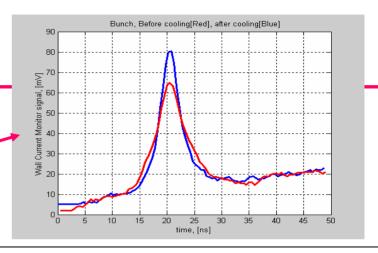
#### Recent Results

- In FY06 RHIC operated with protons only
  - $N_{part}$ =10<sup>11</sup>per bunch >  $\tau_{cool}$  = 100 hours
  - Of the 100 bunches in the store we took one
  - Reduced the intensity to 10<sup>9</sup> protons
  - Tested the cooling equipment in the
     Yellow ring on this bunch only

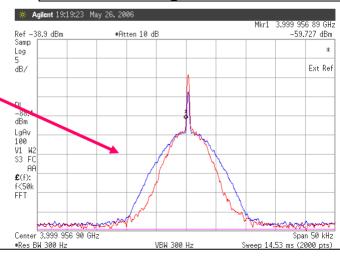








#### Results

- This is the first time stochastic cooling of a high frequency bunched beam has been observed
- Time domain (oscilloscope) and frequency domain (spectrum analyzer) measurements confirm cooling




Schottky spectrum before cooling: blue trace

July 25, 2006 Signal suppression: red trace

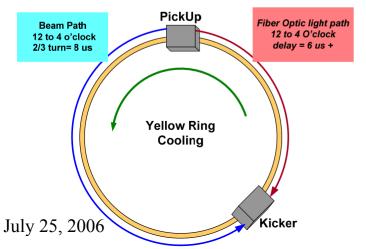


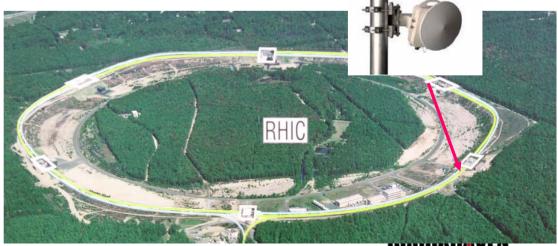
Bunch profile before (red) and after (blue) cooling, Wall Current Monitor



Schottky spectrum before cooling: blue trace

Spectrum after cooling: red


NATIONAL LABORATORY


#### Plans

- In FY07 we will make the Yellow s.c. operational for gold beam
- For the Blue ring
  - Install pick up and upgraded kicker (water cooled)
  - Test "cutting the chord" with microwave link (70 GHz)
- After that comes cooling in the transverse planes

• Eventually s.c. will complement e-cooling by cooling the tails of

the distribution





NATIONAL LABORATORY

### Extra slides



#### Stochastic Cooling Compared to E-cooling

- E-cooling can *reduce* the beam emittance
- Reduced emittance gives an order of magnitude more luminosity (RHIC II)
- E-cooling is not limited by particle number

- Stochastic cooling can prevent the emittance from *growing* (due to IBS)
- Counteracting IBS can extend the store lifetime and stop vertex growth
- Could yield x2 in integrated luminosity
- Stochastic cooling is limited to ~10<sup>9</sup> ions/bunch

#### The two systems complement one another

- •Stochastic cooling cools "hot" beam best
  - •Good for counteracting IBS
  - •Effective for tails of distribution
- •E-cooling cools "cold" beam best
  - •Concentrates beam in a dense core
- 1v 25 2006 ve tails, which can be addressed with stochastic cooling

BROOKHAVEN NATIONAL LABORATORY

| 1. | M                | Iotivation and context                                            | (4)           |
|----|------------------|-------------------------------------------------------------------|---------------|
|    | 1.               | Stochastic cooling can counteract IBS                             |               |
|    | 2.               | Track record for s.c. is not good                                 |               |
|    | 3.               | We have been studying s.c. for RHIC from the beginning of         | of operations |
|    |                  | 1. Heavy ions should be easier, charge/ion, halo cooling, IBS he  | elps          |
|    |                  | 2. New technology, fiber optics                                   |               |
| 2. | $\mathbf{P}_{1}$ | rinciple of operation                                             | (5)           |
|    | 1.               | Feedback on the fluctuations (voltage from a resistor)            |               |
|    | 2.               | Higher bandwidth makes the number of particles lower (coequation) | ooling        |
|    |                  | 1. Why we cannot cool protons                                     |               |
|    |                  | 2. Why s.c. works best on "hot" beam                              |               |
|    | 3.               | Why bunched beam is harder                                        |               |
|    |                  | 1. Higher effective number of particles                           |               |
|    |                  | 2. Coherent component in Schottky spectrum                        |               |
|    |                  | 3. 100 GeV is an economic problem                                 |               |
| 3. | R                | ecent results                                                     | (3)           |
|    | 1.               | Test with 1e9 protons                                             |               |
|    | 2.               | Demonstrated cooling                                              |               |
| 4. | <b>P</b> ]       | Plans (3)                                                         |               |
|    | 1.               | Make yellow operational for Gold FY07                             |               |
|    | 2.               | Study cutting the chord for Blue                                  |               |
|    | 3.               | 3. Long range (future AIP)                                        |               |
|    |                  | 1. Extend to transverse planes                                    |               |
|    |                  | 2. Complement eCooling by cooling tails ('hot")                   |               |

